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Twistor Dynamics of a Massless Spinning Particle1

Andreas Bette2

Received September 30, 1999; revised February 16, 2000

The twistor Hamiltonian dynamics of a massless particle with helicity moving
under the action of an external central force is formulated. The nonholomorphic
canonical twistor quantization procedure turns the so-formulated Hamiltonian
dynamic into its quantum analogue.

1. INTRODUCTION

The purpose of this paper is to demonstrate the utility of the twistor
phase space (Penrose, 1968b, 1972; Tod, 1979; Zakrzewski, 1995; Bette,
1996; Bette and Zakrzewski, 1996, 1997). Twistors may be regarded as
spinors of the SO(4,2) group, which is a two-to-one covering group of the
conformal group C(3,1) of the compactified Minkowski-space, while SU(2,2),
acting on the twistor vector space, is the universal covering group of the
group SO(4,2). More exactly, the chain of the involved two-to-one group
homomorphisms is given by SU(2,2) → SO(4,2) → C(3,1).

As recognized by Penrose, a twistor may be used to represent phase
space variables of a massless particle with, in general, nonvanishing classical
limit of its helicity. Relative to an inertial frame and relative to an arbitrary
three-space origin in this frame, the instantaneous physical variables of the
massless particle (signal) may be identified as its translational kinetic energy
E, its direction of motion n, the non-covariant position r of its center of
(translational 1 spinning) energy, the value of its helicity s, and, finally, the
phase of the twistor, which is canonically conjugate to its helicity. Altogether
we have eight variables which match the eight real dimensions of the twistor
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phase space. A spinning massless particle is not localized in the Minkowski
space, or in other words, there is no single world-curve associated to it
(Penrose and MacCallum, 1972; Odzijewicz et al., 1986).

In order to show how the notion of a twistor phase space may be used,
it seemed natural to us to analyze a simple (hypothetical?) example in which
a massless particle with a nonvanishing helicity is moving under the action
of a conservative and central force. After quantization, this simple model
could be used in high-energy particle physics with the massless particle
being identified with a confined quark moving in an effective approximately
conservative and central force field created by the remaining parts of the
elementary particle under study. Perhaps by an appropriate choice of the
potential found by means of an educated guess, some of the hadronic reso-
nances could then be recovered.

Such a classical system is completely integrable by quadratures. This
is so because there exist à priori four mutually Poisson commuting constants
of motion on the (8D) twistor phase space, namely the Hamiltonian generating
the motion, the absolute value of the total angular momentum, the value of
an arbitrary component of the total angular momentum, and the value of the
helicity. After quantization, the corresponding operators define a maximal
set of mutually commuting observables.

Twistor theory has been around for many years and has drawn the
attention of a number of physicists (e.g., Ablamowicz et al., 1982).

2. TWISTOR SPACE AS A RELATIVISTIC PHASE SPACE

Twistor space T is a C4 5 {(Z 0, Z 1, Z 2, Z 3)} with a pseudo-Hermitian
SU(2,2) conformally invariant metric r :5 Z aWa (W0 5 W 2, W1 5 W 3, W2 5
W 0, W3 5 W 1) (Penrose, 1967, 1975; Penrose and MacCallum, 1972). Such
a choice of the representation of the SU(2,2) metric is motivated by the fact
that while restricting SU(2,2) to its Lorentz subgroup, a twistor Z splits
naturally into its two Weyl spinor components,

Za 5 (vA, pA8), Za 5 (pA , vA8)

The omega spinor component of the twistor Z is a translation-dependent
entity, mixing itself with the pi component. In addition, the pi component is
a conformally dependent entity, mixing itself with the omega component
when a special conformal transformation is applied. Consequently a twistor,
which is a spinor of the group SO(4,2), is not equivalent with two Weyl
spinors, i.e., spinors of the Lorentz group SO(3,1). The equivalence is some-
times wrongly claimed. However, if the origin of the Minkowski space is
fixed and the infinity of the compactified Minkowski space is selected, a
twistor may be represented by two Weyl spinors or if one so wishes by a
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Dirac bispinor. See a discussion from a different point of view in Luehr and
Rosenbaum (1982).

The imaginary part of the SU(2,2) invariant metric r defines a symplectic
structure V on T, i.e., a conformally and therefore Poincaré-invariant canoni-
cal Poisson bracket algebra (Penrose, 1968b, 1972; Tod, 1979),

{Zb, Za} 5 ida
b

with all the remaining commutation relations being equal to zero. In terms
of the Weyl spinor components, the only nonvanishing commutations rela-
tions are

{pB , vA} 5 idA
B (1)

The 10 real-valued functions representing relativistic observables on T [we
adopt the so-called abstract index notation (Penrose, 1968a; Penrose and
Rindler, 1984) where it seems appropriate]

Pa :5 pA8pA , Mab :5 iv(A8pB8)eAB 1 c.c. (2)

define a momentum mapping of the Poincaré group into the twistor phase
space T, or in other words, the commutation relations, induced by (1), among
these 10 real-valued functions in (2) represent the Poincaré algebra (Hughston,
1979; Woodhouse, 1992). Using spinor algebra calculus, it can also be seen
that (Penrose and MacCallum, 1972)

Sa :5 1–2 eabcdMbcPd 5 sP a 5 spA8pA, where s :5 1–2 (ZaZa) (3)

The real-valued, conformally invariant function s in (3), the SU(2,2)
norm of Z, represents the classical limit of the helicity operator (Penrose and
MacCallum, 1972; Penrose, 1975).

3. CLASSICAL TWISTOR DYNAMICS OF A SPINNING
MASSLESS SIGNAL

Assume that the inertial frame in which an external conservative and
central force described by a potential energy U(.r.) is given. Let r 5 0 in
this inertial frame denote a fixed space origin and identify it with the location
of the source producing the force acting on the massless particle. Then r
denotes the instantaneous position of the center of the (translational 1 spin-
ning) energy of the massless signal relative to the so-defined fixed space
origin in the considered inertial frame. The inertial frame itself may be
characterized by a fixed spinor dyad,
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aA , bA such that aAbA 5
1

!2
(4)

The fixed orthonormal tetrad, a timelike base four-vector and three spacelike
base four-vectors in the above-mentioned inertial frame in the Minkowski
space, is then given by

ta :5 aA8aA 1 bA8bA, ua
(1) [ua :5 aA8aA 2 bA8bA (5)

ua
(2) [ va :5 aA8bA 1 bA8aA, ua

(3) [ wa 5: i(aA8bA 2 bA8aA)

We may call the direction defined by ua the z-axis direction, the direction
defined by va the x-axis direction, and the direction defined by wa the y-
axis direction.

The instantaneuos translational kinetic energy of the massless particle,
the components of the instantaneuos linear three-momentum defining its
direction of motion, and the functions representing the components of the
total angular momentum may be regarded as functions on the twistor phase
space according to

E :5 pC8pCtCC8, P(a) :5 pC8pCuCC8
(a) ,

a 5 1, 2, 3, p :5 ( p(2), p(3), p(1)) (6)

J(a) :5
1
2

e(a)(g)(d)Mabua
(g)ub

(d), a 5 1, 2, 3, J :5 (J(2), J(3), J(1)) (7)

e(a)(b)(g) :5 eabcdtaub
(a)uc

(b)ud
(g), e(1)(2)(3) 5 1

with eabcd being the completely antisymmetric Lorentz tensor defining space-
time orientation. Explicitly, in terms of spinor components of the twistor
variable, this yields

Jz 5 J(1) 5 2F 1

!2
(aAbB 1 bAaB)pBvA 1

1

!2
(aA8bB8 1 bA8aB8)pBvA8G (8)

Jx 5 J(2) 5 F 1

!2
(aAaB 2 bAbB)pBvA 1

1

!2
(aA8bB8 2 bA8bB8)pBvA8 (9)

Jy 5 J(3) 5
2i

!2
(aAaB 1 bAbB)pBvA 1

i

!2
(aA8aB8 1 bA8aB8)pB8vA8 (10)

The three functions representing the components of the position of the instan-
taneous center of (translational 1 spinning) energy are given by
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y(a) :5
Mbatbua

(a)

Patc , a 5 1, 2, 3, r :5 ( y(2), y(3), y(1)) (11)

z 5
2i

pC8pCtCC8F 1

!2
(aAbB 1 bAaB)pBvA 2

1

!2
(aA8bB8 1 bA8aB8)pB8vA8G (12)

x 5
2i

pC8pCtCC8F 1

!2
(bAbB 2 aAaB)pBvA 2

1

!2
(bA8bB8 2 aA8aB8)pB8vA8G (13)

y 5
1

pC8pCtCC8F 1

!2
(aAaB 1 bAbB)pBvA 1

1

!2
(aA8aB8 1 bA8bB8)pB8vA8G (14)

The helicity s in (3) is a conformal scalar and thereby also a Poincaré
scalar function on T. Therefore the function s Poisson-commutes with all the
functions introduced in (6)–(14). The identifications of the physical variables
above are such that, using the familiar three-vector notation, one obtains that

J 5 r 3 p 1
sp
E

(15)

The canonical commutation relations in (1) induce the following nonvan-
ishing Poisson bracket relations among the above-introduced dynamical phys-
ical variables:

{y(a), y(b)} 5
se(a)(b)(g) p(g)

E 3 (16)

{p(b), y(a)} 5 d(a)(b), {E, y(a)} 5
p(a)

E
, {J(a), J(b)} 5 e(a)(b)(g) J(g) (17)

{J(a), y(b)} 5 e(a)(b)(g) y(g), {J(a), p(b)} 5 e(a)(b)(g) p(g) (18)

The commutation relations in (16)–(18) are quite reasonable from the physical
point of view. Apart from (16), they are what one should expect. Taking
(16) seriously should, at the quantum level, mean that the position of the
(translational 1 spinning) energy of a massless spinning particle, as identified
in (11), is not a sharp observable.

We assume that the total energy H of a massless particle moving under
the action of a conservative central potential U(.r.) 5 U(r) is given in the
usual way:

H 5 E 1 U(r) (19)

H is a real-valued function on the twistor phase space. The canonical flow
induced by H on the twistor phase space may be represented by the following
set of canonical equations of motion:
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v̇A 5 {H, vA} 5 i
­H
­pA

, ṗB8 5 {H, pB8} 5 i
­H

­vB8
(20)

For the functions identified as physical variables in (6)–(14), it yields

ẏ(a) 5 {H, y(a)} 5 {E 1 U, y(a)} 5
p(a)

E
2

se(a)(b)(g) p(g)

E 3

­U
­y(b)

ṗ(a) 5 {E 1 U, p(a)} 5 {U, p(a)} 5
­U

­y(b)
{y(b), p(a)} 5 2

­U
­y(a)

J̇(a) 5 0, ṡ 5 0 (21)

which in the three-vector notation reads

ṙ 5
p
E

2
s

E 3 (r 3 p)
f (r)
r 2 , ṗ 5

f (r)
r 2 r, (22)

J̇ 5 0, ṡ 5 0, f (r) :5 2r
dU
dr

From (2), it follows that E 5 .p., which, together with (15), implies

(r ? p)2 5 E 2r 2 1 s2 2 J 2 (23)

Choosing the direction of the constant total angular momentum along
the positive direction of the z axis, i.e., along ua in (5) yields

J 5 Jez (ua 5 ez) (24)

Therefore, from (15), (19), (23), and (24) it follows that

z 5 6
rs
J !1 1

s2 2 J 2

(H 2 U(r))2r 2 (25)

Introducing the plane polar coordinates r and w relative to the origin
in the plane spanned by the two mutually orthogonal spacelike unit vectors
va and wa in (5), remembering that

r 5 .r. 5 !r2 1 z2 (26)

where r and z are the cylinder coordinates of the position vector r relative
to the origin, and again using (15), (19), and (24), we obtain

pw 5
(H 2 U(r))2 rJ

s2 1 r 2(H 2 U(r))2 , pr 5
(H 2 U(r))2 Jzr

s(s2 1 r 2(H 2 U(r))2)
(27)

pz 5
(H 2 U(r))J(s2 1 z2(H 2 U(r))2)

s(s2 1 r 2(H 2 U(r))2)
(28)

Finally, making use of (22), the remaining equations become
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ṙ 5 !1 1
s2 2 J 2

(H 2 U(r))2r 2 , ẇ 5
(H 2 U(r))J

s2 1 r 2(H 2 U(r))2 11 1
s2f(r)
r 2E 22

(29)

These equations are completely integrable by quadratures. Taking, e.g.,
U(r) 5 1–2 kr 2 or U(r) 5 k/r, i.e., assuming the 3D harmonic oscillator or
Kepler potential, amounts to a straighforward, although nontrivial integration
procedure. This will produce space trajectories swept out by the center of
(translational 1 spinning) energy of the massless signal. In addition, the
solutions describe how the the linear momentum of the massless particle,
i.e., its direction of translational motion, changes with time. The explicit
calculations are not easily performed by hand, but may be done using, e.g.,
the formidable computer program Maple V. We hope to be able to present
results of such explicit calculations in forthcoming papers.

The absolute value of the velocity of the center of (translational 1
spinning) energy ṙ is larger than one (i.e., is larger than the velocity of light).
However, the absolute value of the translational velocity of the massless
particle, i.e., .p./E is, by definition, always equal to one. However, in the
limit when the helicity s (or/and the interaction) vanishes, the two veloci-
ties coincide.

4. QUANTUM TWISTOR DYNAMICS OF A SPINNING
MASSLESS SIGNAL

A nonholomorphic quantization procedure corresponding to the so-called
real polarization of the twistor phase space (Penrose and MacCallum, 1972;
Woodhouse, 1992) is obtained by means of a natural prescription à la Dirac
(Dirac, 1958) given by

v̂A :5
­

­pA
, v̂A8 :5 2

­

­pA8

, p̂A :5 pA , p̂A8 :5 pA8 (30)

The Poisson brackets relations in (1) will hereby be replaced by the corres-
ponding commutators turning the classical twistor phase space dynamics of
a massless particle into its quantum mechanical analogue.

By the use of (30), the linear four-momentum functions, the angular
four-momentum functions in (2), and the helicity function in (3) turn into
the corresponding operators

P̂a :5 pApA8, M̂ ab :5 ip (A ­

­pB)
eA8B8 1 ip(A8 ­

­pB8)
eAB (31)

ŝ :5
1
2 1pA

­

­pA
2 pA8

­

­pA8
2 (32)
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The canonical Poisson bracket relations in (1) imply that the Poisson bracket
relations among the functions in (2) satisfy the Poisson commutation of the
Poincaré algebra. Therefore the canonical commutation relations between the
differential and multiplicative operators in (30) ensure automatically that the
operators in (31) obey commutation relations of the Poincaré algebra. We
remind the reader that the helicity operator ŝ in (32) commutes with the
operators in (31).

We introduce a Poincaré invariant scalar product on the space of com-
plex-valued (nonholomorpic) functions of pA8, and pA in the following way:

^g1.g2& :5 # [g1(pB , pB8)g2(pB8, pB)] dpA8 ∧ dpA8 ∧ dpA ∧ dpA (33)

Then the set of such functions having finite norm with respect to the scalar
product in (33) defines quantum mechanical states of a massless spinning
particle (signal) in a representation which may be called the square root of
the linear momentum representation.

In the inertial frame as described in the previous section, one has (there
is a sign ambiguity here due to the square root representation)

aApA 5 6!Eeiw/2 e2ic sin
u
2

, aB8pB8 5 6!Ee2iw/2 eic sin
u
2

bBpB 5 6!Ee2iw/2 e2ic cos
u
2

, bA8pA8 5 6!Eeiw/2 eic cos
u
2

and inversely [the angle coordinate c represents the phase canonically conju-
gate to the helicity operator ŝ in (32)],

E 5 (aB8aB 1 bB8bB)pB8pB

e4ic 5
(aA8pA8)(bB8pB8)

(bApA)(aBpB)
, e2iw 5

p(2) 1 ip(3)

p(2) 2 ip(3)
5

(aApA)(bA8pA8)

(bBpB)(aB8pB8)

cos u 5
p(1)

E
5

(bA8bA 2 aA8aA)pA8pA

(aB8aB 1 bB8bB)pB8pB

From the above considerations, it now follows that the Hermitian differential
operators corresponding to the three components of the total angular momen-
tum J(1), J(2), J(3) in (8)–(10) are given by

Ĵ(1) 5 2
1

!2
(aAbB 1 aBbA)pB

­

­pA
1

1

!2
(aA8bB8 1 bA8aB8)pB8

­

­pA8

Ĵ(2) 5 2
1

!2
(bAbB 2 aAaB)pB

­

­pA
1

1

!2
(bA8bB8 2 aA8aB8)pB8

­

­pA8
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Ĵ(3) 5 2
i

!2
(aAaB 1 bAbB)pB

­

­pA
2

i

!2
(aA8aB8 1 bA8bB8)pB8

­

­pa8

and similarily for the components of the position (of the center of translational
1 spinning energy) operators corresponding to the functions in (12)–(14).
We do not write these operator expressions explicitly here, but note that the
square of the classical distance (between the origin and the center of transla-
tional 1 spinning energy) is given by [y(a)P(a) 5 (i/2)(pAvA 2 pA8vA8)]

r 2 5 y(a) y(a) 5
J 2 2 s2 1 (y(a) p(a))2

E 2 5
J 2 2 s2 2 1–4 (pAvA 2 pA8vA8)2

E 2

which, employing the normal ordering of terms, implies that the square of
the quantum distance operator (measuring the square of the distance between
the origin and the center of translational 1 spinning energy) is represented
by the following differential operator:

r̂ 2 :5
1

E 2 (Ĵ 2 2 ŝ 2 2 k̂2), k̂ :5
1
2 1pA

­

­pA
1 pA8

­

­pA8

1 42
Ignoring the usual ordering problems (for example, adopt the normal order-
ing), the way is now open to calculate the (energy) spectrum of any operator
of the form

Ĥ 5 E 1 U(r̂ )

Note that Ĥ, Ĵ 2, Ĵ(1), and ŝ form a complete set of mutually commuting
observables.
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